Analysis of Expressed Genes in Ethylene-Treated Potato Leaves Using Expressed Sequence Tags

Kwon, Tae Ho and Moon Sik Yang*

Institute for Molecular Biology and Genetics, Chonbuk National University. Chonbuk, Chonju, 560-756, Korea

To isolate useful and interesting plant genes in large quantities, random sequencing of cDNA clones from potato leaf library treated with ethylene was performed. Partial sequences of randomly selected 210 clones with the insert of longer than 500 base pair (bp) as well as poly (A) tail have been compared with sequences in GeneBank, EMBL and DDBJ nucleic acid databases and fostered 193 expressed sequence tags (ESTs). The 210 cDNA clones identified are related to various aspect of metabolic pathways such as glycolysis, amino acid synthesis, translation mechanism, ribosome synthesis, hormone response, stress response, regulation of gene expression, and signal transduction. Among the 193 ESTs, 12 ESTs (29 cDNA clones) appeared more than once and 181 ESTs appeared once regarded as a solitary group. Out of 210 clones, 29 clones (13.8%) have no similarity to the known nucleotide sequences and could serve as a potentially useful resource for plant molecular biology referring to particular genes. Nucleotide sequencing to generate more ESTs from ethylene-induced as well as non-induced potato leaf is in progress as well.

Keywords: cDNA library, ethephone, EST, Solanum tuberosum L.

Ethylene is an important plant growth regulator, influcing a variety of plant responses that include germination, leaf abscission, and fruit ripening, as well as responses to environmental stresses such as wounding, chilling, and pathogene infection. As the unique plant-producing hormone, ethylene induces many characteristic molecular changes in plant resistance response such as induction of PR proteins (Bol *et al.*, 1990), cell wall reinforcement (Ke and Saltveit, 1988; Esquerre-Tugaye *et al.*, 1979), local systemic resistance (Enyedi *et al.*, 1992), which prompt us to categorize the expression patterns of ethylene-specific genes.

The human and plant genes expressed during lifetime of the organisms were estimated to consist of 50,000 to 100,000 genes and 15,000 to 60,000 genes, respectively (Kim *et al.*, 1995; Flavell, 1980). However, accumulation of sequence information with respect to their structure and biological function has been deterred in plant compared with other organisms and only a few hundreds of which have been characterized until today (Aliyeva *et al.*, 1996; Hofte et al., 1993). Systematic cDNA sequencing projects are currently under way for several organisms and detailed analyses of expressed sequence tags (ESTs) have been published for more than 3,000 human brain cDNA (Adams et al., 1992), for Caenorhabditis elegans (McCombie et al., 1992; Waterson et al., 1992), for mouse (Hoog, 1991), for yeast (Oliver et al., 1992) and for Arabidopsis thaliana (Hofte et al., 1993). Several approaches have been adopted to isolate novel genes and the partial sequencing of annonymous cDNAs which produce EST turns to be a complementary, but extremely rapid way to identify genes through comparison with sequence database (Wei et al., 1996; Yan et al., 1996). Partial sequencing of cDNAs can be also applied to locate the interesting genes along the chromosomes which results in mapping large DNA fragments. ESTs can be assigned on chromosomes and applied to isolate new genes.

We have chosen the potato (Solanum tuberosum L.) as the experimental material, because classical genetics have developed numerous morphological as well as physiological markers and high density molecular linkage map have been constructed (Tanksley *et al.*, 1992).

^{*}Corresponding author: Fax +82-652-70-3591

^{© 1998} by Botanical Society of Korea, Seoul

MATERIALS AND METHODS

Ethylene Treatment

Young leaves of potato (Solanum tuberosum L. cv. Sumi) were treated with ethylene to extract total RNA for construction of cDNA library. Ethylene treatment was performed using ethephone (Ethrel, Amchem Products, Inc.; 21.6% 2-chloroethyl phosphonic acid) which decomposes to release ethylene. The ethephon was applied as aerosols to 6 week-old leaves for 16 hours under the continuous dark condition. RNA extraction and northern blot analysis were conducted according to procedure of Sambrook et al. (1989).

Construction of a cDNA Library

Poly (A)⁺ RNA was isolated from total RNA using oligo-dT cellulose affinity chromatography (Sambrook *et al.*, 1989). The cDNA library was constructed using the cDNA synthesis kit (Promega, Madison, WI) according to the manufacturer's manual. After treatment with T_4 DNA polymerase, the blunt-ended cDNAs were further phosphorylated using T_4 polynucleotide kinase and cloned into *Smal*digested pUC18 vector. *Escherichia coli* strain JM 109 was transformed by electrophoration and used to propagate recombinant plasmid.

DNA Sequencing and Database Search

DNA sequencing was carried out by the dideoxynucleotide chain termination method (Sanger *et al.*, 1977) using sequenase (version 2.0, USB, OH, USA) and $[\alpha$ -³⁵S]dATP (Amersham). Sequence similarities between cDNA clones and database(GenBank, EMBL, DDBJ) entries, were analyzed using the Blast program through the National Center for Biotechnology Information (NCBI, MD, USA).

RESULTS AND DISCUSSION

Construction of the cDNA Library and Sequencing

The cDNA library used in this study consisted of a total of 5×10^5 independent recombinant clones. Among the white colonies, 500 clones were randomly selected and tested for cDNA insert. Ten clones contained no inserts, 280 clones contained inserts in between 200 and 500, and 210 clones, those of which were further analyzed for DNA sequencing,

 Table 1. Summary of cDNA sequence analysis

	Number of cDNA clones	Percentage	EST species
Total	210	100	193
redundant group	29	13.8	12
4 times	8	3.8	2
3 times	3	1.4	1
2 times	18	8.6	9
solitary group	181	86.2	181
no matched clones	29	13.8	29

contained inserts larger than 500 base pairs. Out of 210 clones, 29 (13.8%) appeared more than once (redundant group) grouped into 12 different ESTs, and 181 clones including those of which have no similarity to the known nucleotide sequences appeared only once with the consequence of 181 ESTs (Table 1). This frequency (13.8%) of redundancy was considerably lower than 31% and 26.7% of redundant clones in the other plant and fungus, Arabidopsis thaliana (Hofte et al., 1993) and Aspergillus nidulans (Lee et al., 1996), respectively. However, this was somewhat higher than 6.6% in human fetal liver (Kim et al., 1995). This could be due to the small sample size or indicate the difference in the variety of expressed genes between induced and non-induced plant tissue. Among the redundant group, two species appeared four times, one species three times and nine species twice. The frequence of the most abundant cDNA was 1.9%, similar to the 2.2% of large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression (Okubo et al., 1992). After sequencing of a whole EST species, a total of 29.4 kbp was analyzed and an average length of EST specie was 140bp.

Sequence Analysis and Database Comparison

Out of 210 clones (Table 2), 27 clones (12.9%) appeared to be potato entries, 57 clones (27.1%) to other plant genes and 97 clones (46.2%) to non-plant genes. Out of 27 clones showing the homology to potato entries, 26 clones were ascribed to as identified clones based on the facts the probability was below 10^{-5} (Altschul *et al.*, 1990). In addition, among the 57 clones showing the homology to other plant genes, 22 clones were identified to the known plant genes. Only six clones out of 97 clones from non-plant showed significant homology to the other genes. These genes were encoding minisatellite sequence of human, Fc-gamma-receptorIIB of human,

Table 2. Summaries of cDNA clones of ethylene-treated potato leaves in nucleotide match with known genes

Clone	Putative identification	Species	DB*	Nucleotide similarity (%)	Probability	Sources of comparison
cDNAs simila	rity to potato genes					
PMYPE009	trypsin inhibitor	S.tuberosum	gb	99/103 (96)	2.6e-26	M22145
PMYPE020	glycine hydroxymethyltransferase	S.tuberosum	emb	63/74 (85)	7.9e-15	Z25863
PMYPE049	wound-induced genes	S.tuberosum	emb	144/145 (99)	1.1e-55	X13497
PMYPE069	ribulose-(1,5)-biphosphate carboxylase	S.tuberosum	emb	118/133 (88)	1.1e-39	X69759
PMYPE072	amino cyclopropane carboxylate acid synthase	S.tuberosum	emb	93/122 (76)	1.2e-21	Z27233
PMYPE078	Potato patatin pseudogene (SB6B)	S.tuberosum	emb	45/74 (60)	1.0	X 04077
PMYPE084	pathogenesis-related protein gene.	S.tuberosum	gb	128/132 (96)	1.9e-44	J03679
PMYPE087	ubiquitin	S.tuberosum	emb	182/187 (97)	4.4e-69	Z11673
PMYPE093	proteinase inhibitor	S.tuberosum	gb	109/116 (93)	2.23e-61	L06137
PMYPE100	endo-1,3-beta-D-glucanase	S.tuberosum	gb	95/100 (95)	1.5e-30	U01900
PMYPE101	endochitinase (EC3.2.1.14)	S.tuberosum	emb	58/70 (82)	6.2e-24	X 07130
PMYPE108	alpha-glucan phosphorylase	S.tuberosum	dbj	99/126 (78)	3.8e-26	D00520
PMYPE128	light-inducible tissue-specific	S.tuberosum	gb	57/59 (96)	1.2e-15	X04753
PMYPE135	stolen tip protein	S.tuberosum	emb	39/43 (90)	6.5e-15	Z11680
PMYPE180	cathepsin D inhibitor protein	S.tuberosum	gb	124/132 (93)	1.1e-41	M96257
PMYPE200	endo-1,3-beta-D-glucanase	S.tuberosum	gb	143/148 (96)	2.1e-50	M01900
PMYPE196	alpha-glucan phosphorylase	S.tuberosum	dbj	165/166 (99)	4.6e-71	D00520
cDNAs simila	rity to other plant genes					
PMYPE001	mRNA for endochitinase (EC 3.2.1.14)	N. tahacum	emb	192/217 (88)	27e-61	X16939
PMYPE032	RNA-binding glycine-rich protein.	N. tabacum	dbj	38/42 (90)	7.6e-11	D16205
PMYPE040	GUT 8-2A cDN clone p1226.	N. tahacum	gb	65/81 (80)	3.9e-40	T18332
PMYPE067	thaumatin- like protein	N. tabacum	emb	29/31 (93)	0.069	X15224
PMYPE104	retroviral-like transposon Tnt 1-94	N. tabacum	emb	30/32 (93)	0.011	X13777
PMYPE116	chloroplast atpase gene	N. tabacum	gb	117/118 (99)	5.7e-41	K00507
PMYPE155	cystein-rich extensin-like protein-4	N. tabacum	gb	50/61 (81)	1.1c-08	L13442
PMYPE138	glyceraldehyde- 3-phosphophate dehy-drogenase	N. tahacum	gb	63/94 (67)	3.4e-07	M14419
PMYPE022	DNA sequence, complete transposon.	A. thaliana	gb	44/69 (63)	0.75	L12220
PMYPE034	transcribed sequence: clone VBVAA07.	A. thaliana	emb	44/71 (61)	1.0	Z30733
PMYPE077	transcribed sequence; clone YAP043T.	A. thaliana	dbj	38/49 (77)	0.0061	Z17609
PMYPE096	transciribed sequence; clone GBGe280.	A. thaliana	gb	43/53 (81)	2.0e-05	Z34064
PMYPE099	calcium-dependent protein kinase.	A. thaliana	emb	36/52 (69)	0.99	D28582
PMYPE131	ATAF1 mRNA	A. thaliana	emb	31/36 (86)	0.045	X74755
PMYPE133	ribulose bisphosphate carboxylase	A. thaliana	gb	32/44 (72)	1.0	M86720
PMYPE177	transcribed sequence; clone FAI214.	A. thaliana	gb	25/31 (80)	0.95	Z34946
PMYPE179	HAT22 homebox protein gene,	A. thaliana	gb	25/29 (86)	1.0	U09337
PMYPE004	mRNA Transcribed Sequence 1087.	Z. mays	gb	31/42 (73)	1.0	X78029
PMYPE046	mitDNA for tRNA-Trp, tRNA-Pro and ORF1	Z. mays	emb	33/48 (68)	1.0	X13704
PMYPE199	ribosomal protein S2	Z. mays	emb	45/71 (63)	0.77	X17318
PMYPE007	25S ribosomal RNA	L. esculentum	emb	37/39 (94)	1.0e-05	X 13557
PMYPE052	TAP1 gene for anionic peroxidase	L. esculentum	dbj	56/82 (68)	2.7e-05	X15853
PMYPE073	Ca ²⁺ ATPase gene, complete cds.	L. esculentum	gb	39/49 (79)	0.0021	M96324
PMYPE105	wound-repressed gene, partial cds	L. esculentum	gb	54/69 (78)	1.6e-10	X59883
PMYPE136	25S ribosomal RNA gene	L. esculentum	emb	85/85 (100)	5.8e-28	X13557
PMYPE137	25S ribosomal RNA gene	L. esculentum	gb	67/69 (97)	8.3e-20	X13557
PMYPE156	mRNA for cell wall protein.	L. esculentum	emb	39/42 (92)	3.4e31	X77373
PMYPE157	cyclophilin (CyP) mRNA.	L. esculentum	gb	79/116 (68)	5.8e-12	M55109
PMYPE159	1-aminocyclpropane-1-carboxylic acid synthase	L. esculentum	emb	30/40 (75)	1.0	X59139
PMYPE163	superoxide dismutase	L. esculentum	gb	62/78 (79)	2.2e-24	M37150
PMYPE188	TAS14 mRNA inducible by abscisic acid and	L. esculentum	emb	23/24 (95)	0.00095	X51904
	environmental stress					
PMYPE008	cDNA, partial sequence (C1101_12).	Oryza sativa	dbj	70/92 (76)	1.9e-14	D22731
PMYPE010	cDNA, partial sequence (C3084_1A).	Oryza sativa	dbj	24/25 (96)	0.75	D23608
PMYPE064	cDNA, partial sequence (C0583A).	Oryza sativa	dbj	48/73 (65)	0.023	D15401
PMYPE075	putative polyprotein.	Oryza sativa	dbj	29/37 (78)	1.0	D32136

Table 2. Continue.

Clone	Putative identification		Species	DB*	Nucleotide similarity (%)	Probability	Sources of comparison
PMYPE031	lectin (Blec4) gene, complete cds.	<i>P</i> .	sativum	gb	40/56 (71)	0.094	L11745
PMYPE050	retrotransposon	Р.	sativum	emb	28/34 (82)	1.0	X66399
PMYPE178	legumin beta-polypeptide	Р.	sativum	gh	42/66 (63)	().99	M1689
PMYPE019	26S ribosomal RNA gene 3' region	С.	limon	emb	102/110 (92)	4.1e-33	X03641
PMYPE024	right telomeric region and ATP6 gene	С.	parapsilosos	emb	33/43 (76)	0.47	X76197
PMYPE038	26S rRNA	М.	sativa	emb	106/108 (98)	7.9e-58	Z11498
PMYPE051	tRNA-Val. 15S rRNA and 21S rRNA	W.	saturnus	emb	38/55 (69)	0.0059	X71392
PMYPE057	dihydroflavonol-4-reductase	Р.	hybrida	emb	34/48 (70)	1.0	X15537
PMYPE085	mRNA for cinnamate 4-hydroxylase	С.	roseus	emb	57/68 (83)	2.0e-28	Z32563
PMYPE091	chalcone synthetase protein	G.	тах	emb	49/79 (62)	0.48	X53958
PMYPE102	chloroplast complete genome	<i>E</i> .	gracilis	emb	43/66 (65)	0.056	X70810
PMYPE118	beta-ketoacyl-ACP sytase 1 isozyme	Н.	vulgare	gh	56/91 (61)	0.014	M95172
PMYPE122	NADP-dependent malic enzyme.	Р.	vulgaris	gb	87/110 (79)	3.7e-21	J03825
PMYPE140	polymorpha chloroplast genome DNA	L.	Marchantia	gb	44/70 (62)	0.92	X04465
PMYPE153	NR ORF, 3 ⁱ end	Р.	tetragonolobus	gh	55/96 (57)	1.0	L16780
PMYPE154	ATP synthase	S.	oleracea	emb	51/81 (62)	0.060	X05916
PMYPE167	photosystem I subunit N	Н.	vulgare	emb	51/76 (67)	0.00040	X66428
PMYPE183	chloroplast genome DNA	М.	polymorpha	emb	31/46 (67)	0.061	X04465
PMYPE184	peroxidase mRNA, complete eds.	G.	hirsutum	gh	30/38 (78)	0.53	L08199
PMYPE190	rbcL, rps14, trnM, trnG, trnD, trnS, rps4,	С.	ellipsoidea	đhj	45/64 (70)	0.0032	D10997
cDNAs simil	atpE, atpB genes, complete cds.						
DMVDE003	terretice abasebation and NA	с.	1. 1		20/50 // 5		10000
PMNTEUU2	tyrosine prosphatase mKNA,	- SIŅ - TT	ela plicata	gn 11.	38/38 (63)	1.0	M37998
PINT PEUDS	HOX-8 protein, 5 terminal sequence.	<i>т</i> .	sapiens	anj	40/73 (03)	0.7	D14970
PMVDE019	interlautin 5	п.	sapiens	gn	42/08 (01)	1.0	M32830
PMTPEUIA	Interleukin 5	<u>н</u> .	sapiens	gn	28/34 (82)	0.99	J02971
PM TFEUZ/	Homo sapiens ala gene.	<u>11</u> .	sapiens	gn	22/25 (88)	0.35	M58318
PMTFE020	ESTERAL ADDIA AUTO 2047	<u>м</u> .	sapiens	emb	45/56 (80)	1.9e-07	A08920
PINITE029	EST040 CDNA clone 30A/.	<i>п</i> .	sapiens	gn	23/84 (03)	0.011	125065
PMV PEOSO	NUR1267 aDNA 25 and	<u> </u>	sapiens	gn	31/41 (75)	0.90	L15189
PM TPE000	NIB1207 CDINA 5 end	Н.	sapiens	gn	46/76 (60)	0.99	116415
DMVDE094	ISC 54K come	п. п	saptens	go	31/38 (81)	0.0052	S52028
	Home generate oDNA along HEDDV97	<u>п</u> .	sapiens	gn	40/58 (68)	0.27	M14660
PMITEU89	Homo sapiens CDNA clone HFBDY87.	Н.	sapiens	gn	31/40 (77)	0.88	106793
PMN FEU90	5 nucleolidase (EC 5.1.5.5)	п.	sapiens	emp	52/84 (61)	0.18	X55740
PMTEC093	Dumme STS UT1010	п.	sapiens	emb	29/38 (76)	1.0	Z21192
DMVDE125	For communication (ECCDOD)	п.	saptens	gn	3//30 (00)	1.0	L17745
PMVPE122	re-gamma-receptornib (records)	<u>п</u> .	sapiens	gn	108/109 (99)	1.68-57	M90734
PMVPE160	Human interleukin 2 (II 2) gene.	п. п	sapiens	gp	34/43 (73)	0.29	002993
DMVDE140	Wison disance cone	п. л	sapiens	go	32/43(74)	0.95	K02056
PMTFE109	EST01013 aDNA aluna UUCDA05	ท. บ	sapiens	gn	34/48 (70)	0.87	M97499
PMYPE181	H. sapiens biliary glycoprotein (BGPa)	н. Н.	sapiens	gn gb	26/32 (81) 24/28 (85)	0.96	M 78865 M76741
	gene, partial cds.			-			
PMYPE185	Human platelet glycoprotein IIIa.	Н.	sapiens	gb	22/22 (100)	1.0	M32684
PMYPE191	Human GPI-H mRNA, complete cds.	Н.	sapiens	gh	34/49 (69)	0.99	L19783
PMYPE005	Caenorhabditis elegans cosmid M106.	С.	elegans	emb	51/83 (61)	0.39	Z46935
PMYPE014	MAD homolog 1 (cem-1) mRNA.	С.	elegans	gb	28/33 (84)	0.69	U10327
PMYPE048	early switch (xol-1) gene exone 1-7.	С.	elegans	gb	34/48 (70)	0.51	L35129
PMYPE071	Caenorhabditis elegans cosmid ZK675	С.	elegans	embl	41/61 (67)	0.32	Z46812
PMYPE106	Caenorhabditis elegans cosmid C16C10.	С.	elegans	emb	45/74 (60)	1.0	Z46787
PMYPE110	Caenorhabditis elegans cosmid R107	С.	elegans	gb	26/32 (81)	1.0	Z14092
PMPYE123	cDNA clone CEMSF78	С.	elegans	gb	26/30 (86)	0.87	M79944
PMYPE144	Caenorhabditis elegans cosmid ZK757	С.	elegans	gb	36/52 (69)	0.83	Z29121
PMYPE193	Caenorhabditis elegans cosmid K04C2.	С.	elegans	gb	46/72 (63)	0.40	U00044

Table 2. Continue.

Clone	Putative identification	Species	DB*	Nucleotide	Probability	Sources of
				similarity (%)		comparison
PMYPE006	vertebrate U2 small nuclear RNA.	S. cerevisiae	gb	47/69 (68)	0.003	M14625
PMYPE015	put. cytochrome P450 involved in spore wall maturation	S. cerevisiae	emb	35/51 (68)	0.80	X55713
PMYPE021	gene for TBF1 protein	S. cercvisiae	emb	47/77 (61)	1.0	X69394
PMYPE025	Yeast mitochondrial gene	S. cerevisiae	emb	42/61 (68)	0.16	V00686
PMYPE043	mitochon-drion oxi3 gene, aapI gene.	S. cerevisiae	gb	39/62 (62)	1.0	L36897
PMYPE044	DNA polymerase III catalytic subunit	S. cerevisiae	emb	29/40 (72)	0.23	X61920
PMYPE035	leucine zipper domain protein homolog	S. cerevisiae	gb	20/20 (100)	0.16	S47695
PMYPE053	carbamyl phosphaste synthetase	S. cercvisiae	gb	63/103 (61)	0.0017	M27174
PMYPE074	S. cervisiae SDB25 gene	S. cerevisiae	emb	33/47 (70)	1.0	X78309
PMYPE092	DNA for right arm of chromosome IV	S. cerevisiae	emb	32/44 (72)	1.0	X82086
PMYPE124	mitochondrion DNA, complete genome.	S. cerevisiae	gb	31/39 (79)	0.45	M62622
PMYPE182	Leu-and Gln-tRNA genes	S. cercvisiae	gb	42/62 (67)	0.096	K00538
PMYPE012	3-hydroxy-3-methylglutaryl coenzyme A synthase	Syrian hamster	gb	32/39 (82)	0.044	L00334
PMYPE013	plasminogenactivator-inhibitor type 2	Unidentified	emb	34/46 (73)	0.80	A10352
PMYPE016	glutamic acid-rich protein gene	P. falciparum	gb	36/51 (70)	0.61	J03998
PMYPE041	ribosomal RNA from the inverted repeat within the 35-Kb circular DNA	P. falciparum	emb	35/48 (72)	0.72	X61660
PMYPE079	rign-infected erythrocyte surface antige	P. falciparum	emb	42/60 (70)	0.058	X04572
PMYPE023	mitochondrial cytochrome b gene	N. aurispinosus	gb	34/46 (73)	0.78	L19728
PMYPE026	transferrin binding proteins 1 and 2	N. meningitidis	emb	27/30 (90)	0.76	Z15130
PMYPE055	clathrin heavy chain (chcA) mRNA.	D. discodieum	gb	30/41 (73)	1.0	M83660
PMYPE061	adenylyl cyclase germination protein	D. discodieum	gb	32/43 (74)	0.29	M87278
PMYPE165	Slime mould dutA mRNA	D. discodieum	dbj	62/100 (62)	4.2e-07	D16417
PMYPE192	cyclic nucleotide phosphodiesterase	D. discodieum	gĥ	43/44 (77)	0.047	M23449
PMYPE168	adh gene for alcohol dehydrogenase	D. lebanonensis	emb	19/23 (82)	0.86	X53429
PMYPE141	spore germination- specific protein	D. discoideum	gb	45/69 (65)	0.13	M33862
PMYPE033	solube NSF attachment protein	D. melanogaster	gb	30/38 (78)	0.94	U09374
PMYPE097	bxd gene	D. melanogaster	gb	49/78 (62)	0.35	L32205
PMYPE143	zinc-binding protein (trithorax)	D. melanogaster	gb	36/51 (70)	0.67	M31617
PMYPE166	hedgehog gene DNA	D. melanogaster	emb	39/59 (66)	0.86	Z11840
PMYPE045	snRNA U3-1	T. thermophila	emb	37/46 (80)	0.0012	X63788
PMYPE054	glycerol kinase (glpK) and	B. subtilis	gb	31/42 (73)	1.0	M34393
PMYPE059	beta-D-galactosidase (lacZ) mRAN	Brugia malayi	gh	40/59 (67)	0.64	M63098
PMYPE063	18S rRNA gene	Tritoxa flexa	gh	16/17 (94)	0.012	U01274
PMYPE065	S-adenosylmethionine decarboxylase	R. norvegicus	emb	27/32 (84)	0.052	Z15122
PMYPE066	nitrogenase iron protein genes (nifH1).	C. pasteurianum	gb	31/40 (77)	0.88	M21537
PMYPE068	cytochrome P3-450	M. musculus	emb	36/52 (69)	1.0	X01682
PMYPE088	immunoglobulin heavy chain	M. musculus	gb	27/31 (87)	0.82	L09584
PMYPE094	ribonucleotide synthetase mRNA	M. musculus	gb	28/35 (80)	1.0	U01023
PMYPE161	Moue 28S rRNA gene, 5' end	M. musculus	gh	27/28 (96)	0.12	M57720
PMYPE164	Mouse protein tyrosine kinase (jak3)	M. musculus	gb	30/40 (75)	1.0	L32955
PMYPE070	enkephalinase	R. norvegicus	gb	32/42 (76)	0.89	M15944
PMYPE082	mRNA for Ran/TC4, complete cds.	T. pvriformis	dbj	27/33 (81)	1.0	D21825
PMYPE098	phospho-transbutyrylase	C. cetobutylicum	gb	40/57 (70)	0.13	L14744
PMYPE107	mitochondrial NADH dehydrogenase	R. culicivorax	gb	36/54 (70)	0.99	L08174
PMYPE109	mitochondrial epsilon-sen DNA	P. anserina	gb	38/54 (70)	0.15	X03127
PMYPE115	serine hydroxymethyltransferase	S. typhimurium	gb	28/36 (77)	1.0	X15816
PMYPE117	outer membrane protein (fasD) gene	E. coli	gb	34/48 (70)	0.68	L22659
PMYPE119	DNA polymerase III (polC) gene	M. pulmonis	gb	55/90 (61)	0.038	U06833
PMYPE129	benomyl/methotrexate resistance gene	C. albicans	gb	28/33 (84)	0.54	X53823
PMYPE132	sigma factor gene (fliA)	S. typhimurium	đbj	34/47 (72)	0.76	D00497
PMYPE134	C-reactive protein (CRP)	O. cuniculus	gb	42/67 (62)	1.0	M13497
PMYPE139	soluble angiotesin-binding protein	S. sclomestica	gb	29/35 (82)	0.42	D11336

Clone	Putative identification	Species	DB*	Nucleotide similarity (%)	Probability	Sources of comparison
PMYPE146	random genomic clone hsb12	M. genitalium	gb	50/62 (80)	3.8e-08	U01771
PMYPE150	Microtus epiroticus element sequence	M. epiroticus	gb	34/41 (82)	0.079	M94696
PMYPE152	amylopullulanase (apu) gene	T. saccharolyticum	gh	38/39 (97)	1.5e-19	L07762
PMYPE170	ribosomal DNA	C. thummi	emb	39/55 (70)	0.10	X01842
PMYPE175	B. mori 19G1 gene for 30 K protein	B. mori	emb	36/54 (66)	1.0	X54736
PMYPE187	rfbP, orf17.4 and gnd genes	S. enterica	emb	37/53 (69)	0.56	X60666
PMYPE189	kinetoplast maxicircle variable region	T. brucei	emb	58/88 (65)	6.0e-05	Z15118
PMYPE195	Simian immunodeficiency virus	S. sciureus	emb	43/64 (67)	0.19	X 14307

Table 2. Continue.

*gb; GenBank; emb, EMBL; dbj. DDBJ

random genomic clone hsb12 of *M. genitalium*, amylopullulanase gene of *T. saccharolyticum*, kinetoplast maxicircle variable region of *T. brucei* and slime mould dutA gene of *D. discoideum*. A total of 54 clones (25.7%) showed the significant homology to the known gene which were 3.2 times higher than the known EST analysis for the rice (8%) (Uchimiya *et al.*, 1992) and similar to human (22.5%) (Okubo *et al.*, 1992). 29 clones (13.8%) have no similarity to the known nucleotide sequences, which can be applied as a particular marker for ethylene treatment or for isolation of novel genes.

The plant stress hormone, ethylene, is known to be associated with induction of characteristic chitinase and β -1,3-glucanase (Boller, 1985). In the addition, molecular and biochemical studies of plant defense response have identified ethylene as one of the potential signals in systemic acquired resistance to pathogens and pests (Chang 1996; Ross, 1961). Our studies clearly show the high frequencies of 6 out of 210 clones and 4 out of 210 clones for both characteristic β -1,3-glucanase and chitinase, respec-

Fig. 1. Northern blot analysis of β -1,3-glucanase. Lanes 1, 2, 3 and 4 contain 15 µg of RNAs from leaves before as well as 6, 12 and 24 hours after the ethylene treatment, respectively. Lane 5 contains the plasmid, PMYPE100, of which the probe was made.

tively (Table 2). Furthermore, 17 clones out of 27 potato entries consisting of PMYPE009, 049, 084, 093, 100, 101, 180, and 200, were identifed as genes which were related to the stress as well as pathogens (Table 2). Although the number of each clone in this study was not propotional to the number of each transcript, the relative abundancy of both chitinase and β -1,3-glucanase gene as well as other inducible genes implys that these gene are induced by ethylene, suggesting that the cDNA library in this study indeed represents the detailed profile of gene expression patterns in an ethylene-treated potato leaf (Fig. 1).

ACKNOWLEDGEMENT

This work was supported by the grant from Genetic Engineering Program, Ministry of Education, Republic of Korea.

LITERATURE CITED

- Admas, M.D., M. Dubnick, A.R. Kerlavage, R. Moreno, J.M. Kelley, T.R. Utterback, J.W. Nagle, C. Fields and J.C. Venter. 1992. Sequence identification of 2, 375 human brain genes. *Nature* 355: 632-634.
- Aliyeva, E., A.M. Metz and K.S Browning. 1996. Sequences of two expressed sequence tags (EST) from rice encoding different cap-binding proteins. *Gene* 180: 221-223.
- Altschul, S.F., W. Gish, W. Miller, E.W. Myers and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410
- Bol, J.F., H.J.M. Linthorst and B.J.C. Cornelissen. 1990. Plant pathogenesis-related proteins induced by virus infection. Annu. Rev. Phytopathol. 28: 113-138
- Boller, T. 1985. Introduction of hydrolases as a defense reaction against pathogens, *In* Cellular and Molecular Biology of Plant Stress. J.L. Key and T. Kosuge (eds.). Alan R. Liss, New York, pp. 247-262.

- Chang, C. 1996. The ethylene signal transduction pathway in Arabidopsis: an emerging paradigm. *Trends Biochem. Sci.* 21: 129-133.
- Enyedi, A.J., N. Yalpani, P. Silverman and I. Raskin. 1992. Localization conjugation and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. *Proc. Natl. Acad. Sci.* USA 89: 2480-2484.
- Esquerre-Tugaye, M.T., C. Lafitte, D. Mazau, A. Toppan and A. Touze. 1979. Cell surfaces in plant-microorganism interactions. *Plant Physiol.* 64: 320-326
- Flavell, R. 1980. The molecular characterization and organization of plant chromosomal DNA sequences. Ann. Rev. Plant Physiol. 31: 569-596.
- Hofte, H., T. Desprez and J. Amselem. 1993. An inventory of 1152 expressed sequence tags obtained by partial sequencing of cDNA from A. thaliana. Plant J. 4: 1051-1061.
- Hoog, C. 1991. Isolation of a large number of novel mammalian genes by differential cDNA library screening strategy. *Nucleic Acids Research* **19**: 935-946.
- Ke, D. and M.E. Saltveit. 1988. Plant hormonc interaction and phenolic metabolism in the regulation of russet spotting in iceberg lettuce. *Plant Physiol.* 88: 1136-1140.
- Kim, J.H., J.C. Song, I.A. Lee, Y. Lee, M.S. Nam, Y. Hahan, J.H. Chung and I.S. Choe. 1995. Analysis of partial cDNA sequence from human fetal liver. J. Biochem. Mol. Biol. 28: 402-407.
- Lee, D.W., S.H. Lee, H.A. Hwang, J.H. Kim and K.S. Chae. 1996. Quantitative analysis of gene expression in sexual structures of *A. nidulans* by sequencing of 3'-directed cDNA clones. *FEMS Microbiol. letters* 138: 71-76.
- McCombie, W.R., M.D. Admas, J.M. Kelley, M.G. FitzGerald, T.R. Utterback, M. Khan, M. Dubnick, A.R. Kerlavage, J.C. Venter and C. Fields. 1992. Caenorhabditis elegans expressed sequence tags identify gene families and potential disease gene homologues. Nature Genet. 1: 124-131.
- Okubo, K., N. Hori, T. Niiyama, A. Fukushima, Y. Kojima and K. Matsubara. 1992. Large scale cDNA sequencing for analysis of quantitative and qualitative

aspects of gene expression. Nature Genet. 2: 173-179.

- Oliver, S.G., Q.J.M. van-der Art, C.M.L. Agostoni, M. Aigle, L. Alberghina, D. Alexandraki, G. Antoine, R. Anwar and J.G. Sgouros. 1992. The complete DNA sequence of yeast chromosome III. Nature 357: 38-46.
- Ross, A.F. 1961 Systemic acquired resistance induced by localized virus infections in plants. *Virology* 13: 340-358.
- Sambrook, J., E.F. Fritsch and T. Maniatis. 1989. Molrcular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- Sanger, F., S. Nicklen and A.R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. *Proc. Natl. Acad. Sci. USA* 74: 5463-5468.
- Tanksley, S.D., M.W. Ganal, J.P. Prince, M.C. de Vicente, M.W. Bonierbale, P. Broun, T.M. Fulton, J. J. Giovannoni, S. Grandillo and G.B. Martin. 1992. High density molecular linkage maps of the tomato and potato genomes. *Genetics* 132: 1141-1160.
- Uchimiya, H., S. Kidou, T. Shimazaki, S. Aotsuka, S. Takamatsu, R. Nishi, H. Hashimoto, Y. Matsubayashi, N. Kidou, M. Umeda and A. Kato. 1992. Random sequencing of cDNA libraries reveals a variety of expressed genes in cultured cells of rice. *The Plant J.* 2: 1005-1009.
- Waterson, R., C. Martin and M. Craxton. 1992. A survey of expressed genes in C. elegans. Nature Genet. 1: 114-123.
- Wei, Y.F., K.C. Carter, R.P. Wang and B.K. Shell. 1996. Molecular cloning and functional analysis of a human cDNA encoding an *E. coli* AlkB homolog, a protein involved in DNA alkylation damage repair. *Nucelic Acids Res.* 24: 931-937.
- Yan, Y.P., Y. Tao and K.Y. Chen. 1996. Molecular cloning and functional expression of human deoxyhypusine synthase cDNA based on expressed sequence tags information. *Biochem. J.* 315: 429-434.

Received October 29, 1997 Accepted December 22, 1997